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BRUHWYLER, J., E. CHLF_,K)E, J-F. LI~GEOIS, J. DELARGE AND M. MERCIER. Anxiolytic potential ofsulpiride, clozapine 
and derivatives in the open-field test. PHARMACOL BIOCHEM BEHAV 36(1) 57.-61, 1990.--Recently acquired data question 
the sharp dichotomy between anxiolytics and neuroleptics, since disinhibitory effects have been measured in the rat with very low doses 
of haloperidol and higher doses of atypical neuroleptics in FI and DRL schedules, but also in the open-field test. That the DA 
transmission in certain brain regions is involved in some aspects of anxiety has recently been suggested. The present study confu'ms 
this hypothesis particularly with high doses of sulphide (80 mg/kg) and clozapine (24 mg/kg) when tested in the open-field test. 
Moreover, the results show how a slight chemical modification of clozapine can give a direction to pharmacological activity with one 
derivative still resembling clozapine and the second one resembling haloperidol. As neuroleptics do not seem to influence the synthesis 
and utilization of GABA, the higher entry score observed with them would seem to depend above all on DA antagonism in the 
mesolimbic system. 

Anxiolytic Neuroleptic Haloperidol Chlordiazepoxide Sulphide Clozapine DA2 antagonism 
Defecation Open-field Rat 

THE open-field test aims to measure the antagonism between the 
instinctive tendency to explore a new environment and the 
tendency to shun this new experience (3, 15, 59, 61). 

Most of the time, this opposition is evaluated on the basis of the 
overall ambulation score and the rate of entry into the innermost 
areas of the open-field (19, 20, 35, 61). The number of times the 
subject defecates or urinates allows, moreover, its emotional 
reactivity to be estimated (28, 49, 62). An increase in open-field 
activity is interpreted in terms of general activation of behavior, 
anxiolytic effect or specific action on exploratory components of 
the ethogram. This third explanation could itself result of a 
decrease in fear and anxiety (4, 5, 16, 53, 61). The authors 
acknowledge that an increase in the locomotion and particularly in 
the rate of entry into the innermost areas of the environment 
reflects an anxiolytic effect. This interpretation is reinforced when 
there is a decrease in defecation (4, 16, 28, 53, 54, 61). 

Numerous tests show that anxiolytics and neuroleptics behave 
differently when the open-field test is employed. Thus, the effect 
of anxiolytics is generally biphasic with an increase in ambulation 
and entry scores for a low dose and a decrease in these same scores 
when a high dose is administered, accompanied by muscular 
relaxation, ataxia and sedation (15, 16, 26, 53, 59). 

Neuroleptics only exert depressant effects in proportion to the 
dose administered and these are habitually accompanied by cata- 

lepsy (4, 5, 34, 43, 56). It has been observed (51) that cataleptic 
subjects tend to defecate more often. This effect is obtained (4) 
with a 10 mg/kg dose of haloperidol (HALO, Haldol ®) in the 
open-field from the second day of administration. In an attempt to 
elucidate the contribution of peripheral DA mechanisms in the 
HALO-induced defecation response, fecal measures were re- 
corded from animals that received the peripheral DA receptor 
antagonist domperidone. Because of domperidone's inability to 
penetrate the blood-brain barrier at low doses, central mechanisms 
were not activated. The results demonstrated that domperidone did 
not influence fecal elimination (49). Since peripheral receptors are 
not implicated, high doses of HALO could exert a central 
anxiogenic effect through locomotor restriction leading to an 
increase in alertness and "emotional defecation" (49). "Emotion- 
al defecation" is recognized as a manifestation of a series of 
behavioural and peripheral changes which are thought to accom- 
pany elevated sympathetic nervous system activity (1,28). 

Recently acquired data question this sharp dichotomy between 
classes of psychotropic agents. Thus, it has been possible to 
measure (13) inhibitory effects which are highly specific to the 
coarse activity measured automatically in the rat, with a dose of 
100 p,g/kg of diazeparn (DZP, Valium®). Conversely, disinhibi- 
tory effects have been recorded (39), accompanied by an increase 
in locomotor activity, for neuroleptics when they are administered 
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in very low doses (0.025 to 0.1 mg/kg HALO and 0.5 to 10 mg/kg 
sulpiride) (SULP, Dogmatil®). It has been suggested (15) that low 
doses of neuroleptics, such as HALO and SULP, showed a clear 
preference for the presynaptic DA2 sites and exerted their antag- 
onism predominantly on these sites. This suggests that DA is 
implicated in the etiology and expression of anxiety (57, 58, 63). 
This same disinhibitory effect has been noted (54) with 40 mg/kg 
of SULP in the rat, translating into a nonsignificant increase in the 
number of internal areas covered and into a significant decrease in 
the number of times the rat defecates. On the other hand, with 80 
mg/kg, activity is significantly reduced without defecation occur- 
ring. This depression cannot, therefore, be related to an anxio- 
genic effect of SULP, as it was the case for higher doses of 
HALO. 

Clozapine (CLOZ), another atypical neuroleptic, which very 
rarely causes extrapyramidal side effects in man, has revealed 
certain disinhibitory effects with low doses in temporal cue 
schedules of the FI and DRL type (8,9). Since CLOZ displays 
agranulocytosis as a serious toxic effect (27), an investigation was 
undertaken to find potential antipsychotic agents free of extrapy- 
ramidal and other toxic side effects (17). Two derivatives of 
CLOZ (Der A and Der B), recently obtained by the Pharmaceu- 
tical Institute of Liege by modulating the structure of the tricyclic 
nucleus, have revealed a stimulating effect on the DA discharge 
from the ventral tegmental area in the rat using an extensively 
described technique (18) or apomorphine antagonist action, for 
Der A and Der B respectively (unpublished results). 

This study has two purposes, namely to confirm or invalidate 
the view put forward by several authors (8,54) in respect of the 
anxiolytic action of CLOZ and SULP and to see how a slight 
modification of the structure of CLOZ, in respect of parameters 
such as the bioisoteric replacement of one of the benzenic nuclei 
by a heterocycle, the suppression of the halogenated substituent or 
the replacement of the central heteroatom by another, can give a 
direction to pharmacological activity. 

METHOD 

Animals 

Two hundred and ten Wistar rats, 100 to 120 days old, 
weighing from 350 to 400 g were used for this experiment. When 
they were 50 days old, the subjects had been put together in cages 
in groups of 10 and placed in an L/D: 12/12 cycle (dark period from 
7 a.m. to 7 p.m.). The temperature was held constant at 21°C. 
Food and water were available ad lib. All experiments took place 
between 10 a.m. and 3 p.m. 

Apparatus 

It consisted of a square surface of wood, the sides of which 
measuring 96 cm, surrounded by a 28 cm high wooden partition. 
The base, painted in white, was divided into 36 squares the sides 
of which were 16 cm long. The open-field was placed in a 
ventilated, sound-proof room lighted by a 40-W bulb. 

Procedure 

Thirty minutes before the test, each group consisting of 10 rats 
received an IP injection containing either HALO (0.2, 1, 5 
mg/kg), chlordiazepoxide (CDP, Librium ®, 5, 10, 20 mg/kg), 
SULP (20, 40, 80 mg/kg), CLOZ (Sandoz Ltd, 8, 16, 24 mg/kg), 
Der A (8, 16, 24 mg/kg), Der B (8, 16, 24 mg/kg) or an NaC1 
solution (9/1000). HALO and SULP were obtained directly in 
injectable form. CDP was dissolved in a physiological solution 
(NaC1 9/1000). CLOZ, Der A and Der B were dissolved in a 
physiological solution (NaC1 9/1000) acidified with acetic acid 
buffered with NaOH at pH 6. The placebo was injected into 3 

groups of 10 subjects. Four subjects were removed from the 
experiments, two from the placebo groups due to thyroid goitres, 
one from the 1 mg/kg HALO group for hyperaggressivity and one 
from the 24 mg/kg Der A group as it died 10 minutes after drug 
administration. 

Thirty minutes after drug administration, the rat was carefully 
placed in a particular compartment next to the partition and left in 
the open-field for 10 minutes. During this period, the total number 
of compartments entered, the total number of interior compart- 
ments entered, separated into class 2 (median) and class 3 (central) 
compartments and the number of fecal boluses were measured. 

The averages obtained for the different parameters and the 
different groups were statistically compared with the help of the 
analysis of variance, with the "dose" as classification criterion, 
followed by post hoc Student's t-tests. 

RESULTS 

Ambulation Score 

The pharmacological treatment is significant (p<0.01) for 
HALO, F(3,53) = 5.21, CDP, F(3,54) = 10.48, and SULP, F(3,54) = 
9.41, but nonsignificant (p>0.05) for CLOZ and its two deriva- 
tives. Only a medium dose of CDP and a high dose of SULP 
increase ambulation in significant fashion (p<0.01). In contrast, 
HALO reduces the score for all doses (significantly). 

Entry Score 

The effect of the pharmacological treatment on the number of 
class 2 areas entered is significant for CDP, F(3,54)=6.03, 
SULP, F(3,54)= 3.49 (p<0.01), CLOZ, F(3,54)= 2.85, and Der 
A, F(3,53) = 3.18 (p<0.05) but not significant for HALO and Der 
B. CDP and CLOZ increase this score significantly (p<0.01) for 
the medium dose and the higher dose (p<0.05) respectively. 
SULP and Der A increase this score significantly with the higher 
doses. 

The effect of the pharmacological treatment on the number of 
class 3 areas entered is significant only for CDP, F(3,54)=6.35, 
p<0.01, and nonsignificant with the other drugs. CDP increases 
this parameter significantly (p<0.01) with a medium dose and the 
highest dose. With HALO, SULP and Der B subjects never enter 
class 3 areas. 

Defecation 

The pharmacological treatment is significant for all the drugs: 
HALO, F(3,53) = 3.11, CDP, F(3,54) = 3.22, SULP, F(3,54) = 
3.38 (p<0.05), CLOZ, F(3,54)=8.18, Der A, F(3,53)=6.98, 
and Der B, F(3,54)=5.20 (p<0.01). CLOZ and its derivatives 
reduce the number of fecal boluses for all doses (significantly). 
CDP and HALO reduce defecation significantly when higher 
doses are administered. With SULP, a significant reduction in the 
number of times the animal defecates can be noted for a medium 
dose (see Table 1). 

DISCUSSION 

As numerous studies have shown, CDP increases the arnbula- 
tory activity for low doses while this effect disappears for high 
doses (15, 16, 20, 53). The absence of effects on locomotion with 
high doses cannot be related to increased anxiety since defecation 
doesn't increase significantly and since entry into the innermost 
areas remains at a significant level. Sedation, ataxia and/or 
muscular relaxation could be responsible of this low activity whilst 
the anxiolytic effect continues to act on the antagonism between 
exploration and fear in favour of the former tendency. 
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TABLE 1 

EFFECTS OF DRUGS ON THE BEHAVIOURAL PARAMETERS IN TI--IE 
OPEN-FIELD TEST 

Drugs (mg/kg) 

Total Entry Score 
Ambulation Area 2 Area 3 Defecation 

Mean Mean Mean Mean 
(SD) (SD) (SD) (SD) 

Control 15.1 (17.7) 0.1 (0.3) 0.0 (0.0) 3.2 (3.4) 

HALO (0.2) 0.9 (0.6)'~ 0.0 (0.0) 0.0 (0.0) 3.3 (2.4) 
(1) 4.2 (3.4)* 0.1 (0.5) 0.0 (0.0) 1.8 (2.4) 
(5) 1.0 (1.2)'~ 0.1 (0.3) 0.0 (0.0) 0.3 (0.7)* 

CDP (5) 17.4 (32.0) 0.9 (2.2) 0.1 (0.3) 3.4 (1.0) 
(10) 73.9 (57.9)t 3.4 (4.6)t 0.7 (0.9)'~ 3.0 (3.3) 
(20) 14.1 (10.1) 0.7 (1.0) 0.4 (0.8)* 0.2 (0.4)* 

SULP (20) 10.2 (8.2) 0.0 (0.0) 0.0 (0.0) 1.8 (2.8) 
(40) 19.1 (13.5) 0.1 (0.3) 0.0 (0.0) 0.2 (0.4)* 
(80) 44.5 (20.8)~" 0.5 (0.8)~ 0.0 (0.0) 3.8 (3.1) 

CLOZ (8) 17.4 (16.7) 0.3 (0.0) 0.6 (1.9) 0.0 (0.0)t 
(16) 8.9 (8.2) 0.2 (0.4) 0.0 (0.0) 0.2 (0.4)t 
(24) 11.0 (25.7) 0.5 (0.0)* 0.0 (0.0) 0.0 (0.0)~ 

Der A (8) 15.9 (27.5) 0.0 (0.0) 0.0 (0.0) 0.5 (1.6)~" 
(16) 4.7 (4.7) 0.3 (0.9) 0.0 (0.0) 0.0 (0.0)t 
(24) 15.1 (29.2) 1.3 (2.6)* 0.3 (1.0) 0.0 (0.0)t 

Der B (8) 4.5 (5.1) 0.0 (0.0) 0.0 (0.0) 2.1 (1.8) 
(16) 12.6 (19.1) 0.1 (0.3) 0.0 (0.0) 0.3 (0.9)t 
(24) 1.6 (1.3) 0.0 (0.0) 0.0 (0.0) 0.2 (0.6)~ 

M= mean; SD=standard deviation; *p<0.05; ~'p<0.01. 

According to some (24), it is the GABAergic potentiation 
which is responsible for the anxiolytic effect, while for others (25, 
36, 37), reduction in 5-HT turnover is the main causal factor. It is 
possible that GABAergic action on the raphe exerts control over 
the ascendant 5-HT neurons and thus reduces 5-HT turnover (12). 
The. anxioselective action of buspirone and the fact that it does not 
interact directly with the benzodiazepine/GABA system but well 
with DA receptors as agonist or antagonist (32,44) have led some 
authors (57) to propose a role for DA in the pathology and 
treatment of anxiety. According to them (57), some of the 
modulatory influences of benzodiazepines on GABA neurotrans- 
mission would be expressed via DA pathways which mediate a 
variety of functions such as ataxia, conflict-reward interactions 
and anxiolysis. Particularly, it seems that the mesocortical and 
mesolimbic DA systems play a role in the cerebral circuitry of 
emotionality and that the benzodiazepines modulate this in some 
manner (57). 

HALO reduces overall exploratory activity for all doses and 
induces catalepsy as several authors have shown in their experi- 
ments (4, 49, 56). In agreement with results previously obtained in 
a novel open-field environment in mice (1), the drop in activity is 
accompanied by a significant reduction in defecation. The motor 
restriction caused by catalepsy is not therefore sufficient to explain 
the increase in emotionaiity as some authors have found in chronic 
treatment (4) or in well-habituated environments (49-52). In fact, 
in the open-field, HALO is tested in animals when they are already 
in a hyperaroused and/or anxious state, thereby creating a possible 
ceiling effect for obscuring the observation of further changes in 
the affective state of the animal and particularly in defecation (52). 

The results obtained with 40 mg/kg of SULP perfectly corrob- 
orate those found in the literature (54). At this dose, SULP doesn't 

change exploration and entry scores significantly while decreasing 
defecation significantly. For 80 mg/kg, whereas others (54) 
observe a significant reduction in ambulatory activity and an 
absence of defecation, our results conf'Lrrn the anxiolytic nature of 
SULP, with a significant increase in overall movement and in the 
number of internal areas covered without any effect on defecation. 
This discrepancy might be due to the chronic dosage regimen 
during 20 days in their experiences while the administration of 
SULP was acute in ours. The authors (54) noted that seventeen 
days from the beginning of the SULP injections, the animals began 
to show physiological disturbances and some animals died. Our 
results provide conf'mnation of several studies (22,45) which note 
a pattern of action specific to SULP in FI 2 min. In addition to 
neuroleptic properties, certain antidepressant potentialities are 
attributed to SULP (2,54). The more recent investigations concur 
in attributing to SULP selective action on DA receptors (33,47) 
almost exclusively in the mesolimbic system, which would explain 
the absence of extrapyramidal effects (23,29). 

With CLOZ at high dose, we clearly encounter the anxiolytic 
hypothesis formulated by certain authors (8,9). In fact, whereas 
overall activity doesn't increase, the number of class 2 areas 
increases and defecation decreases significantly for a dose of 24 
mg/kg. It has, moreover, been possible to show that CLOZ does 
not induce catalepsy (7), block DA agonist-induced stereotypies 
(31) or produce DA receptor supersensitivity (55) or a chronic 
depolarization state in A9 brain regions (11). As with SULP, 
numerous experimenters (23,29) acknowledge that CLOZ has a 
DA action which is distinctly more mesolimbic than nigro-striatal. 

Regarding the two derivatives of CLOZ, the considerable 
resemblance they retain in respect of the mother substance is the 
drop in defecation observed for all doses. This quite excludes the 
intervention of anxiety in their general action on behavior in the 
open-field. Der A has no significant effect on the overall locomo- 
tor score. On the other hand, when high doses are given, though 
this score remains unchanged, entry into the class 2 areas increases 
to a significant extent. Its overall profile retains most of the 
characteristics of CLOZ. Der B tends to decrease general activity 
for a high dose but this tendence is nonsignificant. It has no 
significant effect on the entry score but decreases defecation 
significantly. Its profile resembles more HALO than CLOZ. 

One can conclude from this study that, while CLOZ has 
anxiolytic tendencies, these are fragile and can easily be modified 
by focusing, on the one hand, on the presence or not of 
haiogenated substituents in the tricyclic nucleus and, on the other 
hand, on the replacement of one of the benzenic nuclei by a 
bioisoteric heterocycle and of the central heteroatom by another. 
This last-mentioned modification is connected with differences of 
pharmacological activity between CLOZ, clothiapine and loxapine 
noted in the literature. Among these dibenzazepine derivatives, 
CLOZ is classed, in contrast to the other, as an atypical neuro- 
leptic. 

Increase in total locomotor activity could be explained for CDP 
and SULP by the drop in 5-HT turnover (36, 37, 41, 42, 60), 
which is either direct for SULP or indirect via the GABA for CDP. 
In contrast, CLOZ, which has revealed an antagonistic LSD action 
in the raphe, increases 5-HT turnover (21) and would not, as a 
result, increase ambulatory activity. No 5-HT activity is known for 
HALO (40). On the other hand, predominantly nigro-striatai DA 
activity would suffice to inhibit all locomotion through catalepsy 
(10,29). As neuroleptics do not seem to influence the synthesis 
and utilization of GABA in the substantia nigra and the corpus 
striatum (30), the higher entry score, observed with SULP and 
CLOZ, would seem to depend above all on DA antagonism in the 
mesolimbic system. 

Disinhibitory and anxiolytic potential for neuroleptics had been 
measured in different tests: two-compartment test (39), conflict 
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test (39), FI (8), DRL (9) and open-field (54). Clinical studies 
themselves had reported that neuroleptics could relieve anxiety- 
related symptoms (46), borderline (6) and chronically anxious 
patients (38,48). This research is in agreement with the hypothesis 
according to which the DA transmission in certain brain regions 
and particularly in the mesolimbic and mesocortical systems could 
be involved in some aspects of the etiology and expression of 
anxiety (57). 
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